The Hele-Shaw asymptotics for mechanical models of tumor growth
نویسندگان
چکیده
Models of tumor growth, now commonly used, present several levels of complexity, both in terms of the biomedical ingredients and the mathematical description. The simplest ones contain competition for space using purely fluid mechanical concepts. Another possible ingredient is the supply of nutrients through vasculature. The models can describe the tissue either at the level of cell densities, or at the scale of the solid tumor, in this latter case by means of a free boundary problem. Our first goal here is to formulate a free boundary model of Hele-Shaw type, a variant including growth terms, starting from the description at the cell level and passing to a certain limit. A detailed mathematical analysis of this purely mechanical model is performed. Indeed, we are able to prove strong convergence in passing to the limit, with various uniform gradient estimates; we also prove uniqueness for the asymptotic Hele-Shaw type problem. The main tools are nonlinear regularizing effects for certain porous medium type equations, regularization techniques à la Steklov, and a Hilbert duality method for uniqueness. At variance with the classical Hele-Shaw problem, here the geometric motion governed by the pressure is not sufficient to completely describe the dynamics. A complete description requires the equation on the cell number density. Using this theory as a basis, we go on to consider the more complex model including nutrients. We obtain the equation for the limit of the coupled system; the method relies on some BV bounds and space/time a priori estimates. Here, new technical difficulties appear, and they reduce the generality of the results in terms of the initial data. Finally, we prove uniqueness for the system, a main mathematical difficulty.
منابع مشابه
Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient
Several mathematical models of tumor growth are now commonly used to explain medical observations and predict cancer evolution based on images. These models incorporate mechanical laws for tissue compression combined with rules for nutrients availability which can differ depending on the situation under consideration, in vivo or in vitro. Numerical solutions exhibit, as expected from medical ob...
متن کاملIncompressible limit of mechanical model of tumor growth with viscosity
Various models of tumor growth are available in the litterature. A first class describes the evolution of the cell number density when considered as a continuous visco-elastic material with growth. A second class, describes the tumor as a set and rules for the free boundary are given related to the classical Hele-Shaw model of fluid dynamics. Following the lines of previous papers where the mat...
متن کاملDerivation of a Hele-Shaw type system from a cell model with active motion
We formulate a Hele-Shaw type free boundary problem for a tumor growing under the combined effects of pressure forces, cell multiplication and active motion, the latter being the novelty of the present paper. This new ingredient is considered here as a standard diffusion process. The free boundary model is derived from a description at the cell level using the asymptotic of a stiff pressure lim...
متن کاملAnalysis of a Mixture Model of Tumor Growth
We study an initial-boundary value problem (IBVP) for a coupled Cahn-Hilliard-Hele-Shaw system that models tumor growth. For large initial data with finite energy, we prove global (local resp.) existence, uniqueness, higher order spatial regularity and Gevrey spatial regularity of strong solutions to the IBVP in 2D (3D resp.). Asymptotically in time, we show that the solution converges to a con...
متن کاملClassical solutions for Hele-Shaw models with surface tension
It is shown that surface tension effects on the free boundary are regularizing for Hele-Shaw models. This implies, in particular, existence and uniqueness of classical solutions for a large class of initial data. As a consequence, we give a rigorous proof of the fact that homogeneous Hele-Shaw flows with positive surface tension are volume preserving and area shrinking.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013